<dfn id="8wqko"></dfn>
  • <ul id="8wqko"><sup id="8wqko"></sup></ul><fieldset id="8wqko"><menu id="8wqko"></menu></fieldset> <strike id="8wqko"><menu id="8wqko"></menu></strike>
  • <ul id="8wqko"></ul>
  • <strike id="8wqko"></strike><strike id="8wqko"></strike>
  • <fieldset id="8wqko"></fieldset>

    加載中...

    點擊這里給我發(fā)消息

    QQ群:417857029

    新產(chǎn)品·新技術(shù)信息

    硅烷表面處理的趨勢

    來源:林中祥膠粘劑技術(shù)信息網(wǎng)2012年06月12日

    閱讀次數(shù):

    Trends in Silane Surface Treatments

     

    Organosilanes have been around for quite some time. They have provided effective primers and coupling agents for composites, adhesives, and sealants for many years. Because of the bifunctionality of these materials and the variety of end-groups that are possible, they are not easy to specify. (The recent SpecialChem4Adhesives article describes guidelines for selecting the appropriate organosilane for adhesives and sealants.) However, these properties are also what provide organosilanes with a great deal of versatility, and this versatility has lead to applications that were not well known a decade ago.

    One example of the modern use of silanes is as a glass treatment for double sided pressure sensitive tapes having a foam carrier.1 These tapes are being used increasingly as glazing materials for window installations. Glass is hydrophilic (water loving) and may lead to performance issues over time in humid or wet environments due to water vapor undercutting the bond line and interfering with normal adhesion of the foamed tape. The silane primer treats the glass surface creating a hydrophobic surface that will act to protect the bond line.

    Conventional organosilanes rely on the hydrolysis of their Si-O-R groups and subsequent condensation for their coupling with inorganic surfaces. Human health and environmental concerns are leading to the development of new products with less hydrolysis / condensation by products. These include hydrolyzed, lower alkoxy-containing intermediates or solventless products. Prehydrolyzed silanes under well-controlled conditions, water based silane solutions, solid carrier supported silanes that could be added during extrusion processes, and plasma surface treatments in the presence of silanes are among the approaches being investigated to reduce VOC issues.

    Novel silane based metal pretreatments have also been developed as cost effective alternatives to the chromating processes. The new process is a simple dip process, is non-carcinogenic, and has outperformed chromate systems under different test conditions. The surface treatment process provides superior corrosion and adhesion performance.2

    Sustainable biocomposites consisting of agriculturally grown fibers and either petroleum based or biobased resin matrices represent yet another use of modern silane technology. Poor fiber/matrix interfacial adhesion can negatively affect the physical properties of the resulting composites due to surface incompatibility between the hydrophilic natural fibers and non-polar polymers. A variety of silanes (mostly trialkoxysilanes) have been found to be effective coupling agents that promote interface adhesion and improve the properties of these composites.3 The silane is considered to modify the highly hydrophilic nature of the surfaces of biofibers such as cellulose, jute, hemp, etc. Once treated these fibers have improved compounding properties and efficiently transfer load to the surrounding resin matrix.

    Because silanes require a monomolecular thickness, they provide good primers and adhesion promoters for electrically conductive adhesives. For example, the use of a silane coupling agent in an electrically conductive epoxy adhesive was found to provide a significant improvement in electrical conductivity as well as lap shear strength increase before and after service aging.4 Similar advantages of silane coupling agents were also found in improving the dielectric properties of barium titanate epoxy composites.

    Please share your thoughts using the tools below.

    References

    1. Silane Glass Treatment AP115, 3M Company.
    2. Subramanian, V. and Ooij, W.J., "Silane Based Metal Pretreatments as Alternatives to Chromating", Surface Engineering, Vol. 15, No. 2, 1999, pp. 169-192.
    3. Xie, C., et. al., "Silane Coupling Agents Used for Natural Fiber / Polymer Composites: A Review", Composites Part A: Applied Science and Manufacturing, Vol. 41, No. 7, 2010, pp. 806-819.
    4. Tan, F., et. al., "Effects of Coupling Agents on the Properties of Epoxy Based Electrically Conductive Adhesives", Int. J. of Adhesion and Adhesives, Vol. 26, No. 6, 2006, pp. 406-413.
    • 標簽:
    相關(guān)閱讀

    本站所有信息與內(nèi)容,版權(quán)歸原作者所有。網(wǎng)站中部分新聞、文章來源于網(wǎng)絡或會員供稿,如讀者對作品版權(quán)有疑議,請及時與我們聯(lián)系,電話:025-85303363 QQ:2402955403。文章僅代表作者本人的觀點,與本網(wǎng)站立場無關(guān)。轉(zhuǎn)載本站的內(nèi)容,請務必注明"來源:林中祥膠粘劑技術(shù)信息網(wǎng)(www.nongfusping.com)".

    網(wǎng)友評論

    ©2015 南京愛德福信息科技有限公司   蘇ICP備10201337 | 技術(shù)支持:南京聯(lián)眾網(wǎng)絡科技有限公司

    客服

    客服
    電話

    1

    電話:025-85303363

    手機:13675143372

    客服
    郵箱

    2402955403@qq.com

    若您需要幫助,您也可以留下聯(lián)系方式

    發(fā)送郵箱

    掃二
    維碼

    微信二維碼
    国产精品嫩草影院久久| 亚洲高清专区日韩精品| 99re视频精品全部免费| 国产精品无码无片在线观看| 国产内地精品毛片视频| 精品人妻中文无码AV在线| 午夜亚洲AV日韩AV无码大全| 国产综合精品一区二区| 国精品产区WNW2544| 久久99国产精品久久99小说| 日本国产成人精品视频| 中国精品白嫩bbwbbw| 99re在线精品视频| 亚洲午夜久久久精品影院| 熟妇无码乱子成人精品| 久久久无码精品国产一区| 国产精品女同久久久久电影院| 国产成人精品国内自产拍| 99久久免费国产精品热| 中文字幕九七精品乱码| 国产色无码精品视频免费| 高清国产精品人妻一区二区| 久久成人国产精品一区二区| 久久99亚洲综合精品首页| 99久久成人国产精品免费| 99热婷婷国产精品综合| 九九在线精品视频专区| 久久青青成人亚洲精品| 无码精品久久久久久人妻中字| 亚洲国产精品热久久| 精品无码人妻一区二区三区品 | 久久国产精品久久精品国产| 最新精品露脸国产在线| 精品一区二区三区四区| 亚洲国产精品一区二区久久hs| 久久这里只精品99re免费| 无码人妻精品一区二区三区66 | 无码专区国产精品视频| 国产精品白嫩在线观看| 日韩大片在线永久免费观看网站| 日韩熟女精品一区二区三区|